Top Papers of the week(MAY 20 - MAY 26)
1.) Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet ( link )
We find a diversity of highly abstract features. They both respond to and behaviorally cause abstract behaviors. Examples of features we find include features for famous people, features for countries and cities, and features tracking type signatures in code. Many features are multilingual (responding to the same concept across languages) and multimodal (responding to the same concept in both text and images), as well as encompassing both abstract and concrete instantiations of the same idea.
2.) SimPO: Simple Preference Optimization with a Reference-Free Reward ( paper | code )
Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward.
3.) DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data ( paper )
Proof assistants like Lean have revolutionized mathematical proof verification, ensuring high accuracy and reliability. Although large language models (LLMs) show promise in mathematical reasoning, their advancement in formal theorem proving is hindered by a lack of training data. To address this issue, we introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems. This approach involves translating natural language problems into formal statements, filtering out low-quality statements, and generating proofs to create synthetic data. After fine-tuning the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs, our model achieved whole-proof generation accuracies of 46.3% with 64 samples and 52% cumulatively on the Lean 4 miniF2F test, surpassing the baseline GPT-4 at 23.0% with 64 samples and a tree search reinforcement learning method at 41.0%.
4.) Data Selection for Transfer Unlearning ( paper )
As deep learning models are becoming larger and data-hungrier, there are growing ethical, legal and technical concerns over use of data: in practice, agreements on data use may change over time, rendering previously-used training data impermissible for training purposes. These issues have driven increased attention to machine unlearning: removing "the influence of" a subset of training data from a trained model. In this work, we advocate for a relaxed definition of unlearning that does not address privacy applications but targets a scenario where a data owner withdraws permission of use of their data for training purposes.
5.) Lessons from the Trenches on Reproducible Evaluation of Language Models ( paper )
Effective evaluation of language models remains an open challenge in NLP. Researchers and engineers face methodological issues such as the sensitivity of models to evaluation setup, difficulty of proper comparisons across methods, and the lack of reproducibility and transparency.
6.) Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models ( paper )
Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers.
7.) Layer-Condensed KV Cache for Efficient Inference of Large Language Models ( paper | code )
Huge memory consumption has been a major bottleneck for deploying high-throughput large language models in real-world applications. In addition to the large number of parameters, the key-value (KV) cache for the attention mechanism in the transformer architecture consumes a significant amount of memory, especially when the number of layers is large for deep language models. In this paper, we propose a novel method that only computes and caches the KVs of a small number of layers, thus significantly saving memory consumption and improving inference throughput.
8.) Multi-turn Reinforcement Learning from Preference Human Feedback ( paper )
Reinforcement Learning from Human Feedback (RLHF) has become the standard approach for aligning Large Language Models (LLMs) with human preferences, allowing LLMs to demonstrate remarkable abilities in various tasks. Existing methods work by emulating the preferences at the single decision (turn) level, limiting their capabilities in settings that require planning or multi-turn interactions to achieve a long-term goal. In this paper, we address this issue by developing novel methods for Reinforcement Learning (RL) from preference feedback between two full multi-turn conversations.
9.) How Far Are We From AGI ( paper )
The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. Yet, the escalating demands on AI have highlighted the limitations of AI's current offerings, catalyzing a movement towards Artificial General Intelligence (AGI). AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing works have summarized specific recent advancements of AI, they lack a comprehensive discussion of AGI's definitions, goals, and developmental trajectories.
10.) ReVideo: Remake a Video with Motion and Content Control ( webpage | paper )
Despite significant advancements in video generation and editing using diffusion models, achieving accurate and localized video editing remains a substantial challenge. Additionally, most existing video editing methods primarily focus on altering visual content, with limited research dedicated to motion editing. In this paper, we present a novel attempt to Remake a Video (ReVideo) which stands out from existing methods by allowing precise video editing in specific areas through the specification of both content and motion. Content editing is facilitated by modifying the first frame, while the trajectory-based motion control offers an intuitive user interaction experience.
AIGC News of the week(MAY 20 - MAY 26)
1.) FlashRAG: A Python Toolkit for Efficient RAG Research ( repo )
2.) YOLOv10: Real-Time End-to-End Object Detection ( repo )
3.) ManyICL: Many-Shot In-Context Learning in Multimodal Foundation Models ( repo )
4.) Personal-Graph: Graph for building memory for AI applications ( repo )
5.) AnyNode v0.1( repo )
more AIGC News: AINews